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ABSTRACT
Collaborative filtering has been a dominant approach in the recom-
mender systems community since the early 1990s. Collaborative
filtering (and other) algorithms, however, have been predominantly
evaluated by aggregating results across users or user groups. These
performance averages hide large disparities: an algorithm may per-
form very well for some users (or groups) and poorly for others.
We show that performance variation is large and systematic. In
experiments on three large-scale datasets and using an array of col-
laborative filtering algorithms, we demonstrate large performance
disparities across algorithms, datasets and metrics for different
users. We then show that two key features that characterize users,
their mean taste similarity and dispersion in taste similarity with
other users, can systematically explain performance variation bet-
ter than previously identified features. We use these two features
to visualize algorithm performance for different users and we point
out that this mapping can capture different categories of users that
have been proposed before. Our results demonstrate an extensive
mainstream-taste bias in collaborative filtering algorithms, which
implies a fundamental fairness limitation that needs to be mitigated.
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1 INTRODUCTION
Collaborative filtering is one of the most widely deployed, well-
studied approaches that have emerged within the recommender sys-
tems community [30, 42, 43]. Traditional but also more recent and
sophisticated collaborative filtering algorithms are often effective
when performance is averaged across users. However, performance
averages hide drastic performance variation between users [51]. Al-
though performance variation is well documented [39], we still have
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a limited understanding of the reasons for it. Further, performance
variation surfaces in many important contexts, such as when devel-
oping user categorization schemes [53], in algorithm selection [19],
when deriving performance estimates for users [4, 19, 40], and more
recently concerning algorithmic bias and fairness [3, 20, 51]. A bet-
ter understanding of how performance varies across users could
enable progress along several fronts and inspire the development
of techniques to improve algorithm performance for disadvantaged
groups of users.

In this work, we seek to understand the extent of performance
variation in collaborative filtering by evaluating the performance of
five staple collaborative filtering algorithms (k-nn user-user, NMF,
k-nn item-item, FunkSVD, and EASE, see Table 1) for different users
on the Jester [25], Faces [17], and MovieLens 1M [27] datasets. We
demonstrate that performance for users varies drastically across
collaborative filtering algorithms and datasets. We further show
that all algorithms perform poorly (even below chance level) for
a substantial group of users. We then explore the extent to which
several previously proposed user variables [4, 19], such as variation
in user ratings and mean user rating, can explain the performance
discrepancies, and show that they explain only a small propor-
tion of variance. By contrast, we demonstrate that two key user
features, the mean taste similarity, and the dispersion in taste sim-
ilarity between the target user and other individuals [6, 37], can
explain a substantial proportion of performance variance across
datasets, algorithms, and metrics. The performance variation is so
structured and predictable that we can visualize it effectively across
users. Collaborative filtering algorithms perform much better for
users with high mean taste similarity, a phenomenon that we call
mainstream-taste bias. They also perform better for users with high
dispersion in taste similarity, which shows that this user feature can
add further nuance to the notion ofmainstreamness and can be used
to identify different groups of users. Our work is among the first to
document the extent of mainstream-taste bias across collaborative
filtering algorithms, datasets, and metrics—a necessary first step
toward developing new strategies to mitigate this crucial fairness
issue.

2 RELATEDWORK
Our work falls in a long tradition of contributions that stress the
differential abilities of recommender systems to deal with certain
items, users, and datasets [9, 45]. A well-studied phenomenon re-
lated to mainstream-taste bias is popularity bias, which refers to
recommender systems overly recommending items that are already
widely popular [1–3, 8, 32]. Most related to our approach, Abdol-
lahpouri et al. [2] show the disparate impact of several recommen-
dation algorithms for users who prefer niche, diverse, or popular
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Model First appearance Parameters
KNN User-User Resnick et al., 1994 weight skewness, number of neighbors
KNN Item-Item Sarwar et al., 2001 weight skewness, number of neighbors
NMF Zhang et al., 2006 number of components, l1 regularization, l2 regularization
FunkSVD Funk, 2006 learning rate, regularization rate, epochs, embedding size
EASE Steck, 2019 regularization rate

Table 1: The collaborative filtering models we compare and their parameters, ordered by the year of their first appearance.

content. Kowald et al. [36] replicate the findings from [2] for music
recommendation and use the term mainstream users to refer to
people who prefer popular items. In contrast to these contributions,
we define mainstream taste through correlation patterns between
user ratings (taste profiles) rather than item popularity.

The term mainstream bias has been used before by Li et al. [38]
and Zhu and Caverlee [54]. Li et al. [38] define mainstream users as
people who prefer items liked by many people and react negatively
to items widely disliked by others (whereas non-mainstream users
show interest in rarely visited items or oppose widely accepted
or rejected items). The authors identify non-mainstream users by
selecting people for whom a collaborative filtering baseline per-
forms worst. Then they show that their autoencoder architecture
with an adversarial training objective improves performance for
non-mainstream users. More closely related is the work by Zhu and
Caverlee [54], who try to identify mainstream versus niche users
and test different definitions of mainstreamness. One proposed defi-
nition, similar to ours, defines mainstream users in terms of their
average similarity to other users (e.g., Jaccard similarity). We also
show that taste dispersion, the standard deviation of the similarity
of a user to other individuals, can add further nuance to the concept
of taste mainstreamness.

Our work also builds on a line of work that tries to predict
recommender system performance from user and dataset charac-
teristics [4, 10, 13, 19], with applications to algorithm selection [11,
13, 19]. Lastly, our work also relates to work on identifying user
categories (e.g., grey sheep users) using statistical properties of the
data [26] andwork on assessing algorithm performance for different
user groups [21]. We show that mean taste similarity and disper-
sion in taste similarity are highly predictive of the performance of
multiple collaborative filtering algorithms for different users and
can explain a larger proportion of the performance variance than
the user and dataset characteristics identified by Ekstrand and Riedl
[19] and Adomavicius and Zhang [4]. Thus, these two features can
be effectively used for mapping different user categories.

3 METHODS
3.1 Recommendation algorithms
We analyse four classic collaborative filtering algorithms and one
state-of-the-art algorithm (see Table 1). First, we implement two
neighborhood algorithms: the weighted user-user k-nearest neigh-
bors algorithm [30, 42] and the weighted item-item k-nearest neigh-
bors algorithm [44]. In addition, we investigate two staple ma-
trix factorization approaches: non-negative matrix factorization
(NMF) [52] and FunkSVD, a method popularized during the Netflix
competition [22]. Lastly, we implement the EASE algorithm [49], a

recent item-item approach inspired by shallow autoencoder models
that achieves competitive performance comparable to strong linear
approaches and deep neural networks [14]. We evaluate all models
using stratified cross-validation, using 60% of each user’s rating
data for training, 20% for validation and hyperparameter selection,
and the remaining 20% for testing. We repeat this process five times
with different splits and report the mean test performance per user.
Our code is available at: https://github.com/philipphager/recsys-
mainstream-taste-bias.

3.2 Evaluation metrics
Weevaluate algorithm performance using the normalized discounted
cumulative gain (nDCG) [33], the randommean square error (RMSE),
and the fraction of concordant pairs (FCP) [35]. FCP measures the
percentage of item pairs that an algorithm ranked in the same way
as a user. An FCP of 1.0 indicates perfect agreement between model
and user, while an FCP of 0.5 means that a model’s predictions
are not better than chance. We adopt FCP due to its similarity to
metrics in decision theory and its intuitive interpretation. Due to
space constraints, we omit the results for RMSE and refer to our
code repository for results across all metrics.

To evaluate the extent of performance variation across users, we
also compute two notions of fairness for each ranking metric. First,
we report each metric for the bottom 1% of users for whom the
recommender system performs worst and the gap between them
and the top 1% of users who benefit the most from their recom-
mendations. This notion of fairness is a generalized version of a
Rawlsian maximin principle [23, 41, 55], according to which a soci-
ety should seek to improve the position for the most disadvantaged
users. Our findings hold when varying the share of disadvantaged
users from 1% to 5% or even 10%. Second, we quantify disparities
across users by computing the Gini-coefficient for each ranking
metric [12], which is commonly used to quantify inequality and
dispersion in distributions.

3.3 User features
In a second step, we examine how well we can predict the user-level
performance of each algorithm using different user characteristics.
First, we employ user features, such as the mean user rating or
the variance in user ratings, that were used to predict algorithmic
performance for different users by Ekstrand and Riedl [19]. Second,
we examine features used by Adomavicius and Zhang [4] to predict
the performance of different methods across datasets. Table 3 lists
all user features adopted from previous work that we could easily
compute on our datasets.

In addition, we adopt two key user features, the mean taste simi-
larity between a user and all other users and the dispersion in the
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Dataset Model FCP nDCG
mean p1 diff Gini mean p1 diff Gini

MovieLens 1M

KNN User-User 0.6457 0.4327 0.3843 0.0574 0.9364 0.5501 0.4407 0.0202
KNN Item-Item 0.6034 0.4224 0.3950 0.0651 0.9209 0.6062 0.3850 0.0225
NMF 0.5999 0.4315 0.3961 0.0582 0.9240 0.6219 0.3696 0.0223
FunkSVD 0.6496 0.4345 0.3794 0.0555 0.9393 0.5369 0.4539 0.0189
EASE 0.6135 0.4302 0.3924 0.0543 0.9302 0.6074 0.3836 0.0206

Faces

KNN User-User 0.7096 0.4605 0.3406 0.0479 0.9014 0.5794 0.4113 0.0402
KNN Item-Item 0.7046 0.4573 0.3435 0.0483 0.8958 0.5406 0.4542 0.0426
NMF 0.6920 0.4144 0.3841 0.0499 0.8862 0.5457 0.4489 0.0477
FunkSVD 0.7069 0.4491 0.3529 0.0489 0.8979 0.5551 0.4384 0.0433
EASE 0.7056 0.4261 0.3736 0.0480 0.8987 0.5507 0.4436 0.0418

Jester

KNN User-User 0.6609 0.4501 0.3483 0.0491 0.9224 0.6948 0.2950 0.0251
KNN Item-Item 0.6554 0.4467 0.3500 0.0499 0.9212 0.6947 0.2950 0.0256
NMF 0.6121 0.4338 0.3572 0.0588 0.9026 0.6796 0.3103 0.0320
FunkSVD 0.6527 0.4472 0.3507 0.0505 0.9204 0.6853 0.3042 0.0253
EASE 0.6499 0.4420 0.3544 0.0501 0.9200 0.6909 0.2991 0.0243

Table 2: The performance of different collaborative filtering algorithms as measured in FCP and nDCG. We report the average
performance across users (mean) and the performance for the bottom 1% of users for whom the algorithms perform worst (p1).
We also report the performance difference between them and the performance for the top 1% of users for whom the algorithms
perform best (diff). Lastly, we quantify the overall performance disparity across users in terms of Gini index.

observed taste similarities between the target user and other users.
These two features correspond to statistical properties, such as the
mean cue-criterion correlation (or mean correlation with other ex-
perts) that have been leveraged in psychology [15, 16, 18, 24], man-
agement [31], decision science [34, 37], and machine learning [47,
48] to predict the performance of heuristic decision-strategies and
improper linear models in different decision environments. These
cues have been shown to strongly predict the performance of simple
variations of the k-nearest-neighbor algorithm [5].

For both features, we first compute the Pearson correlation be-
tween the rating vectors of all user pairs in a dataset. If two users
did not rate at least two common items, their Pearson correlation
coeffificent is set to zero. The mean taste similarity is then defined
as the mean Pearson correlation coefficient between a user and
all other users [5]. The higher a user’s mean taste similarity, the
more their preference follows the opinion of others, i.e., is more
mainstream. Consequently, a low mean taste similarity implies that
the user’s ratings diverge from the mainstream, and below 0, the
user opposes commonplace preferences. The second dimension is a
user’s taste dispersion, the standard deviation of the user’s Pearson
correlation coefficient with all other users [5]. Intuitively, taste dis-
persion measures how consistently a user agrees or disagrees with
other individuals. As a feature it adds further nuance to the concept
of mainstreamness and it helps identify specific user groups. For
example, users with taste similarity below zero and low dispersion
consistently oppose the popular opinion and tend to relate to few
other users. As we will show, this category of users consistently
receives poor recommendations.

We use user features from previous work, mean-taste similarity,
and dispersion in taste similarity separately and jointly to predict
how well a collaborative filtering algorithm will perform for unseen

users. As a predictor, we train a simple linear model and report
the out-of-sample adjusted 𝑅2 as a measure of the quality of the
estimates. All reported 𝑅2 estimates are obtained using 5-fold cross-
validation. Lastly, we visualize the structure in user-level perfor-
mance variability by projecting individuals onto a two-dimensional
plane that consists of their mean taste similarity and their taste
dispersion with other individuals.

3.4 Datasets
Our evaluation employs the MovieLens 1M [27], Jester [25], and
Faces [17] datasets. MovieLens and Jester are prominent datasets
used repeatedly by the recommender systems community to eval-
uate algorithm performance in collaborative filtering. Recently,
DeBruine and Jones [17] published the Faces of London dataset
that reports the ratings of 2,513 people of face portraits of a diverse
group of London inhabitants. Although it was developed to study
research questions in psychology, the dataset closely corresponds to
the dating/matching apps domain, which leverages recommender
systems. We use the Faces dataset because it is a complete dataset
in which all users have evaluated all recommended “items". Thus,
we can exclude the varying number of ratings per user as a cause
for potentially observed performance differences. For similar rea-
sons, we focus on the subset of 14,116 users in Jester who evaluated
all 100 jokes in the dataset. Last, we use MovieLens 1M without
additional filtering and demonstrate that the same concepts apply
to common sparse datasets used in the community. We also chose
these three datasets because they explore different taste domains
(humor, people, and movies) and vary in the average degree of
shared taste between users, which is reflected by their varying
ranges of mean taste similarity. Because all three datasets report
ratings on different scales, we apply min-max scaling and normalize
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Dataset Features Model
User-User Item-Item NMF FunkSVD EASE

MovieLens

mean taste similarity 0.5204 0.2039 0.1214 0.4843 0.1345
taste dispersion 0.0154 0.0545 0.0137 0.0213 0.0147
mean taste similarity, taste dispersion 0.5443 0.2079 0.1212 0.4999 0.1344
mean rating, rating variance, log rating count,
log item popularity, user Gini, mean item Gini 0.0835 0.1816 0.03 0.118 0.043

all 0.5601 0.2659 0.1349 0.5202 0.1505

Faces

mean taste similarity 0.6864 0.5665 0.8588 0.6593 0.7428
taste dispersion 0.4536 0.5332 0.2039 0.4711 0.4317
mean taste similarity, taste dispersion 0.7882 0.7227 0.8576 0.7541 0.8015
mean rating, rating variance, log rating count,
log item popularity, user Gini, mean item Gini 0.2274 0.2249 0.1665 0.2371 0.199

all 0.8786 0.8326 0.9098 0.8591 0.8755

Jester

mean taste similarity 0.3699 0.2227 0.8623 0.3103 0.4372
taste dispersion 0.5652 0.6768 0.118 0.5799 0.4499
mean taste similarity, taste dispersion 0.6887 0.7077 0.8622 0.6654 0.6443
mean rating, rating variance, log rating count,
log item popularity, user Gini, mean item Gini 0.0015 0.0024 -0.0031 0.0146 0.0374

all 0.7057 0.7213 0.8681 0.691 0.7135

Table 3: Predicting algorithm performance measured in FCP from user features using linear regression. We measure predictive
performance in adjusted 𝑅2 score averaged over 5-fold cross validation.

the ratings into a common 0-1 scale. We verified that this rating
normalization did not negatively impact the performance of the
evaluated models.

4 RESULTS
4.1 Performance (disparities)
Table 2 displays the performance of the five collaborative filtering
algorithms as measured by FCP and nDCG. All algorithms show
substantial performance variation for different users across all three
datasets and measures. To give a sense of the degree of variation, for
all strategies and datasets, the absolute difference in terms of FCP
between the top 1% and the bottom 1% of users is larger than 34%.
In some cases, it is as large as 39%. For example, EASE achieves an
average FCP of 61.3% on MovieLens, but a performance of 82.3% for
the top 1% and 43% (worse than chance) for the bottom 1%. Similarly,
NMF performs on average at 69.2% on Faces but at 79.9% for the
top 1% and at 41.4% for the bottom 1%. Similar patterns hold for all
algorithms and datasets tested. Note that all algorithms perform at
lower-than-chance levels for a non-negligible proportion of users
on all datasets. Thus, a small category of users would be better
off with random recommendations. Overall, we find major perfor-
mance disparities between users across all algorithms, datasets, and
metrics. However, there is no clear trend between models, which is
also reflected in the fact that the top-bottom differences and Gini
indexes achieved are almost identical for all models on the same
dataset.

4.2 Using different user features to explain
performance variation

In the previous section, we showed that the five algorithms per-
form very differently across users. This section investigates how
predictive a user’s mean taste similarity and dispersion are for these

user-level performance differences. As a baseline, we employ user
features that were proposed by Ekstrand and Riedl [19] (log of the
number of ratings, the mean user rating, and the variance in the
user’s rating), as well as dataset-level features proposed to predict
collaborative filtering performance by Adomavicius and Zhang
[4] that we could easily convert to user-level features to explain
performance variance (log item popularity, user Gini, mean item
Gini, also see Methods section). A linear model trained with these
features has an out-of-sample adjusted 𝑅2 score ranging from 0.03
(NMF) to 0.18 (KNN Item-Item) on MovieLens, 0.17 (NMF) to 0.24
(FunkSVD) for the Faces dataset, and -0.01 (NMF) to 0.04 (EASE) for
Jester. In contrast, a simple linear model that uses mean taste simi-
larity and dispersion in taste similarity has an adjusted 𝑅2 between
0.13 (EASE) and 0.52 (KNN User-User) on MovieLens, 0.72 (KNN
Item-Item) and 0.86 (NMF) on the Faces dataset, and 0.65 (EASE)
to 0.86 (NMF) for Jester. Table 3 gives the complete overview of
how well we can predict the performance of each collaborative
filtering algorithm for individual users. A model using both sets of
features marginally improves in adjusted 𝑅2. Still, when compared
to previously considered features, the relative strength of mean
taste similarity and, to a lesser extent, dispersion in taste similarity
is remarkable.

4.3 Structure in performance variation
The analyses presented in Table 3 suggest that performance varia-
tion is systematic and can be explained mainly by the same two key
variables for all algorithm/dataset combinations. Figure 1 visualizes
the collaborative filtering performance for each user in terms of
FCP and positions users according to their taste similarity and taste
dispersion. We can see visually that all algorithms perform well for
individuals with high mean taste similarity to others (mainstream
tastes) and poorly for individuals with low mean taste similarity.
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Figure 1: User-level recommendation performance measured in FCP for five collaborative filtering algorithms across three
datasets. Users are placed on a 2-dimensional plane depending on their mean taste similarity and dispersion in taste similarity
with other users in the dataset. Each point is an individual user.
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In essence, collaborative filtering has a strong built-in mainstream-
taste bias. It performs much better for people with mainstream
tastes than people with alternative or unusual tastes (low or neg-
ative mean-taste similarity). In addition, the algorithms tend to
perform better for individuals with higher dispersion in taste sim-
ilarity. This observation is especially noticeable in the complete
datasets Faces and Jester, in which every user rated every item. For
most models and datasets, performance variation is structured in
such a way that we can see a clear performance gradient from left
to right on the graphs (see Figure 1, larger mean taste similarity)
and from the bottom to the top (see Figure 1, larger dispersion in
taste similarity).

5 GENERAL DISCUSSION
We assessed and exposed the large performance variability of five
representative collaborative filtering algorithms and showed that
they are prone to a mainstream-taste bias—they perform much
better for mainstream users than those with non-mainstream or
unusual tastes. Our results shed light on a previously little-known
issue and open the way for future research.

5.1 Implications for evaluation and fairness
The term mainstream bias has been used to account for the large
performance disparities between users with mainstream and non-
mainstream tastes [38, 54]. Yet we still lack a precise definition of
mainstream users. In this work, we proposed an approach based
on the statistical properties of user profiles, and we showed its
potential to expose the sizeable mainstream bias that appears to be
inherent in many collaborative filtering algorithms across settings
and metrics. Such performance disparities have direct implications
for algorithm evaluation and fairness. So far, algorithms have been
evaluated in terms of mean performance, but our work stresses
the importance of going further and looking at performance at
the individual level. Further, our findings emphasize the need for
fairness evaluation when developing new recommender systems
to reduce user performance disparities or to focus on specific user
categories. For example, one could conceive performance metrics
that penalize for larger disparities in the population, drawing inspi-
ration from the social sciences [7, 46]. Additionally, metrics such
as the Rawlsian maximin principle metric [23, 41, 55], might be
valuable when designers want to improve performance for specific
groups of users, such as the most disadvantaged users.

5.2 Categories (or a continuum) of users
Our visualization approach in Figure 1 can account for and help
organize previously proposed categories of users and special user
profiles (e.g., mainstream or non-mainstream users, grey sheep
users, and power users in shilling attacks). Although several user
categories have been proposed, there has been no attempt to in-
tegrate them into a common map or schema. For example, the
term grey sheep users [11] refers to those whose opinions do not
correlate with those of other users and who rarely receive good
recommendations. In essence, there is no signal to be captured
for these users, and correlations with other users are mostly hap-
hazard and spurious. Thus, these user profiles would be similar
to randomly generated ratings; their mean taste similarity will be

zero and recommendation performance will be close to chance
for all collaborative filtering algorithms. Further, our work sug-
gests the existence of many nuanced categories of mainstream or
non-mainstream users. For example, non-mainstream users with
low dispersion in taste similarity seem to be hard to accommo-
date for any collaborative filtering algorithm. This group of users
seems to be suppressed by collaborative filtering algorithms (i.e.,
worse than chance performance), and they might even be better
off receiving randomly generated recommendations. In contrast,
non-mainstream users with higher dispersion in taste similarity
seem to have some community they can relate to, and collaborative
filtering algorithms can achieve decent prediction rates for them.

5.3 Limitations and future work
Although we demonstrated mainstream-taste bias for five repre-
sentative collaborative filtering algorithms, our list is far from com-
plete. New collaborative filtering algorithms are added to the recom-
mender systems arsenal at a fast pace [28, 29, 50]. Thus, future work
should aim to demonstrate the potential generality of mainstream-
taste bias for new algorithms, but also in further taste domains
and contexts (i.e. implicit feedback). Algorithms or approaches that
can effectively mitigate mainstream-taste bias by improving the
performance for disadvantaged users could generate a substantial
breakthrough in the field, and lead to an improvement both in
terms of average performance and in terms of different measures
of fairness. We believe that this is a promising avenue for future
research.
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