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Click models Visual intuition
» How can we extract useful information about users from implicit feedback? True relevance
» Click models explicitly model effects that impact clicks: position, . : 2 ) N 0 CMIP | nDCG T
trust, item relevance, scrolling direction, session abandonment. . . " 1o 1O
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» Applications: understanding users, evaluation metrics, estimating biases, 2 N ' » 0.1 I 0.5
simulating users, and predicting ad clicks. 00 > ‘ 00 0.0
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Most click model applications require out-of-distribution prediction, 10- - .
meaning predicting clicks on rankings not seen during training. . 1o
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_ o | o | A naive model (DCTR) outperforms an unbiased model (PBM) in terms of nDCG,
» Click prediction using log-likelihood or perplexity only guarantees but our CMIP metric catches that DCTR overfits on errors of the logging policy.

in-distribution performance [1].

Evaluation fails to ensure that models generalize

» Relevance assessment using nDCG against expert annotations can fail

when the system collecting the data is already good [1]. Simulating out-of-distributions settings
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Position bias Q J Clicks

1. Rank items using one of three rankers (logging policies).
- 2. Sample train clicks on rankings using simulated users.

. 3. Train different neural click models.
I 4. Simulate test clicks on rankings obtained by a different policy (ood).

5. Measure click prediction performance of models on the ood test set.
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Ignoring position bias and naively interpreting clicks Sample queries Sample rankings Sample clicks Train click model
as relevance can achieve high nDCG scores Y a PBM
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» Blindly repl_lcatmg the previous prO?luctlon sys_tem (without 5 NP > UM
understanding users) can achieve high evaluation scores. ; CACM
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Catch a model cheating B E L R
User Affine
MixtureDBN
How would you detect a cheater in school? T i .............................. oo
: Evaluate ood
» Comparing grades does not work, students who cheat can score high grades @ 5

just by copying the answers of others. § oce

. Uniform shuffle > > ppl

» We compare the mistakes students make! g ) cmip

Using a small set of expert annotations, we can quantify if a new model
makes similar mistakes to the previous model:

Old model New model
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u Findings & Limitations
>»
» CMIP improves predicting the downstream performance of
j k click models when coupled with existing metrics.
» CMIP helps to pick models that predict clicks well on unseen
rankings.
Expert annotations
(o ) Limitations: CMIP is a pointwise metric, requires relevance annotations,
| and assumes that these annotations do not disagree with user preference.
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