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Signals in Web Search

Textual Signals:

• Query content: text

• Document content: title, page content

How well does the query text match the document text? [13]

• BM-25

• TF-IDF / vector space models

• Language modeling

4



5



Signals in Web Search

Signals beyond text:

• Query: type, language

• Document: urls, images

• User context: location, date, device, search history

• Metadata: popularity, recency, page quality, spam, adult content, . . .

• Other stakeholders: advertisers, auctions, content creators, . . .

Search engines use many features:

• Airbnb [19]: > 195 features

• Bing [50]: > 136 features

• Istella [14]: > 220 features

• Yahoo [6]: > 700 features

How do we combine all of these signals?
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Learning to Rank



Learning to Rank

Learning to Rank (LTR) is

“. . . a task to automatically construct a ranking model using training data, such that

the model can sort new objects according to their degrees of relevance, preference, or

importance.” – Liu [37]
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Notation

Representation

• For a given query, we want to rank a collection of items: d ∈ D

• Each query-item pair is represented by a feature vector: x⃗q,d ∈ Rm

• Each query-item pair is judged for relevance, typically: yq,d ∈ [0, 4]

A ranking model f : x⃗ → R scores each document to optimize the order of items

when sorting descendingly by f (x⃗q,d) = sq,d .

How to measure the quality of a ranking model?
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Evaluation

Reciprocal Rank

Reciprocal of the rank of the first relevant item after sorting by our scores s:

RR =
1

ranki
with ranki being the rank of the first relevant item in our list.

Assumption: Only the position of the first item matters (e.g., in navigational search).

Discounted Cumulative Gain

DCG =
1

n

n∑
i=1

gain(yi )

discount(i)
=

1

n

n∑
i=1

2yi − 1

log(i + 1)

Assumptions: Highly relevant items are more useful than somewhat relevant items.

Relevant items ranked lower are less useful since the user is less likely to see them.
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Pointwise Methods



Pointwise LTR

Predict the relevance of each document from its features

Regression: Relevance as a real-valued score [11, 17]

Lmse =
1

n

n∑
i=1

(yi − si )
2 (1)

Classification: Relevance as unordered categories [10, 42]

Lce = −1

n

n∑
i=1

yi · P(yi | xi ) (2)

e.g., with P(y | x) = softmax (s)

Ordinal regression: Relevance as ordered categories [12, 54]
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Pointwise LTR: pros and cons

Benefits

• Easy to adopt any regression or classification model

• Calibrated output scores

Challenges (solvable)

• Class imbalance due to few relevant documents

• Requires normalization since feature distribution can differ greatly per query

Limitations

• Predicted item scores are independent of each other

• A lower loss does not necessarily improve ranking metrics
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Pointwise LTR: A lower loss does not imply a better ranking

1

0

0

0

Relevance labels

0.6

0.5

0.5

0.5

Predicted scores

0.50

What is the loss?

Lmse =
1
n

∑n
i=1 (yi − si )

2

12



Pointwise LTR: A lower loss does not imply a better ranking
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Pointwise LTR: A lower loss does not imply a better ranking
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Pairwise Methods



Pairwise LTR

Observation: Ranking requires only relative relevance levels: si > sj if yi > yj .

Pairwise loss functions generally take the following (unnormalized) form [9]:

Lpairwise(s, y) =
∑
yi>yj

ϕ (si − sj)

with ϕ being the:

• Hinge function in RankingSVM [22, 28]: ϕ (z) = max(0, 1− z)

• Exponential function in RankBoost [16]: ϕ (z) = e−z

• Logistic function in RankNet [4]: ϕ (z) = log(1 + e−z)
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RankNet

Introduced by Burges et al. [4] in 2005 to train neural ranking models.

Popular in industry applications and won the ICML 2015 test of time award.1

1. The probability of the event that item di should be ranked over dj is defined by:

P(di ≻ dj) = Pij =
1

1 + e−γ(si−sj )

P(di ≺ dj) = Pji = 1− Pij

The desired probabilities when yi > yj are P̄ij = 1 and P̄ji = 0

1https://icml.cc/2015/index.html%3Fp=51.html
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RankNet

2. Compute the cross-entropy loss between Pij and P̄ij :

LRankNet = −P̄ij logPij − (1− P̄ij) log(1− Pij)

= −P̄ij logPij − P̄ji logPji

3. Given its symmetry, we only have to compute the loss over pairs where di ≻ dj :

LRankNet(s, y) =
∑
yi>yj

−P̄ij logPij

=
∑
yi>yj

− log

(
1

1 + e−γ(si−sj )

)
=

∑
yi>yj

log
(
1 + e−γ(si−sj )

)
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RankNet

Problems with this approach?

Usually implemented using virtual probabilities P̄ ∈ {0, 1} and any differences in

relevance labels is treated equally. Not very elegant, but works. . .

But are all item pairs equally important?
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Pairwise LTR: Minimizing pairwise errors

Reducing pairwise errors from 13 (left) to 11 (right),

while top-heavy measures like MRR and nDCG degrade [4, Figure 1].
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Pairwise LTR: Minimizing pairwise errors

The black arrows denote the RankNet gradients,

while what we’d arguably want are the red arrows [4, Figure 1].
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Listwise Methods



LambdaRank

Motivation: Can we directly optimize IR metrics such as nDCG, Precision, and MRR?

Reciprocal Rank: Reciprocal of the rank of the first relevant item after sorting by our

scores s:

RR =
1

ranki

Discounted Cumulative Gain:

DCG =
1

n

n∑
i=1

2yi − 1

log(i + 1)

Non-smooth and discontinuous

• Ranking metrics typically only depend on the rank of an item, not on its score

• Model scores change smoothly, the ranks of documents change abruptly
21



Listwise LTR

Non-differentiable

Ranking metrics rely on a sorting operation that is non-smooth and discontinuous

w.r.t. to model parameters θ:

∂RR

∂θ
= ???

∂DCG

∂θ
= ???

Thus, ranking metrics are either flat (with zero gradient) or discontinuous

Holy grail of LTR: Finding methods that (indirectly) optimize listwise IR metrics
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LambdaRank



LambdaRank

Observations:

I. To train a model, we don’t need the costs just the gradients (of the costs w.r.t model scores)

II. Gradients should be larger for pairs that have a greater impact on our metric 23



LambdaRank

Idea: Scale the RankNet loss/gradients of an item pair based on the change in nDCG

when swapping their positions.

1. Let’s decompose nDCG into gains (relevance-based) and discounts (rank-based):

NDCG =
1

maxDCG

n∑
i=1

2yi − 1

log(1 + i)
=

n∑
i=1

Gi

Di

Gi =
2yi − 1

maxDCG

Di = log(1 + i)
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LambdaRank

2. Let ∆NDCG(i , j) be the absolute difference in nDCG when swapping di and dj :

∆NDCG(i , j) = |Gi − Gj ||
1

Di
− 1

Dj
|

3. Finally, we weight the loss of each item pair by its difference in nDCG:

LLambdaRank(s, y) =
∑
yi>yj

∆NDCG(i , j) log
(
1 + e−γ(si−sj )

)
The implementation of LambdaRank using multiple additive regression trees (MART)

is called LambdaMART.
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LambdaLoss

Empirical success

LambdaMART has been empirically shown to optimize for nDCG [4]

A late theoretical foundation

It was unclear if the iterative LambdaRank procedure converges

and how the underlying loss relates to nDCG [37, 58]

Wang et al. proved in 2018 that LambdaRank optimizes a lower bound on nDCG

and define it as a special case of their more general LambdaLoss framework [58]
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ListNet and ListMLE



Listwise LTR

Motivation: Create a probabilistic model for ranking, which is differentiable.

The Plackett-Luce model assumes that the probability of selecting an item from a

list depends on its value compared to the total item value in the list [38, 47]:

P(di ) =
ϕ(si )∑n
j=1 ϕ(sj)

where ϕ(si ) is an increasing and strictly positive function. With ϕ(si ) = esi , this

becomes a softmax function.
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Listwise LTR

We can sample a ranking by repeatedly applying the Plackett-Luce model, removing

the sampled item from the candidate list.

Example: What is the joint probability of the following ranking π = (d2, d1, d3)?

P(π | s) = ϕ(s2)

ϕ(s1) + ϕ(s2) + ϕ(s3)
· ϕ(s1)

ϕ(s1) + ϕ(s3)
· ϕ(s3)
ϕ(s3)
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Listwise LTR

ListNet [5]

Compute the probability distributions over all possible permutations based on

ground-truth labels and predicted scores. Minimize the cross-entropy loss between

these two distributions.

Since this is very costly, the authors only compute the top-k permutations (top-1).

ListMLE [61]

Compute the probability of the ideal permutation based on the ground truth. Can get

difficult with categorical labels since multiple permutations are possible.

29



Hybrid methods

Scores of pairwise and listwise methods are not calibrated

Problematic for using sd ,q in downstream applications (ad ranking, auctions, . . . )

Multi-objective loss [53]

LMultiObjective = α · LListNet + (1− α) · LCrossEntropy

Linear combination of listwise and pointwise loss has conflicting objectives [3]

Combined objective [3]

LListCE =
1∑n
i=1 yi

·
n∑

i=1

yi ·
σ(si )∑n
j=1 σ(sj)

ListCE aligns pointwise and listwise objectives for ad click prediction on YouTube
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Summary

Pointwise

• Predict relevance per item

• Calibrated scores, but ignores ordering of items

Pairwise

• Predict relative relevance in item pairs

• Ignores that not all pairs have the same impact

• Notoriously uncalibrated scores (careful with downstream applications)

Listwise

• Optimize a list of items based on non-differentiable ranking metrics

• Approximations by heuristics, bounding, or probabilistic ranking methods

• Check if the assumptions of your ranking metric matches your problem
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Industry Impact



Features used

Features used for matching queries to products come in multiple types. A small

group of publications lists a large number of ranking features:

• Karmaker Santu et al. [29] list the use of 562 features for product search

• Ludewig and Jannach [39] list 518 features for product search

• Wu et al. [59] list dozens of features for product search (precise number withheld).

Three main types of feature used in these publications:

1. query features,

2. product features, and

3. query-product features.
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Features used ii

Papers listed do not provide full details; papers plus discussions with authors have led

to the lists below.

Query features Query features are features that are computed using the query only.

They include:

• Query length

• Expected product category

33



Features used iii

Product features Product features are ranking features that are computed using

product information.

• Overall product sales

• Total show count, click count, view count, and purchase count of each product

• Total distinct user count of the four types of behavior on each product

• Click-through rate (ctr), view rate and click value rate (cvr) of each product

• Rating

• Number of reviews

• Brand

• Price

• Session-based features: has this product been clicked before in this session?
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Features used iv

Query-product features Query-product features are features that concern the relation

between query and product. They include:

• Text match, computed using BM25F

• Semantic matching based features

• Whether product belongs to the department predicted for the query.

• Query-product attribute match

• Query-product attribute value match (one feature for each type of attribute

(Category, Brand, Price, Color, Size, etc.) available in the product catalog).
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LTR from the trenches i

Uses in e-commerce settings

• Airbnb: Haldar et al. [20] use a DNN with a LambdaRank loss function; online

improvement of bookings over a pointwise GBDT and an ensemble model

combining GBDT and factorization machine signals.

• Alibaba: Wu et al. [59] use an ensemble method with heavy feature engineering;

GBDT as meta-learner with LR.

• Alibaba: Pei et al. [46] use a transformer based reranker that is evaluated on a

Yahoo! LETOR dataset and on e-commerce data, with online and offline

comparisons against LambdaMART and DLCM.
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LTR from the trenches ii

• Allegro.pl: Pobrotyn et al. [48] use a context-aware, self-attention mechanism for

scoring, taking item-level and list-level properties into account.

• Amazon: Sorokina and Cantú-Paz [55] use GBDT with pairwise ranking for

product search; no comparison against other LTR methods.

• Etsy: Wu et al. [60] use a listwise LTR method to optimize both click and

purchase probability; they compare against a range of LTR methods, including

Lambda-MART.

• Facebook: He et al. [21] use GBDT as a feature extractor, then LogReg, for ad

click prediction; no comparison with other LTR methods.
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LTR from the trenches iii

• German retailer of products for babies and small children: Jannach and

Ludewig [27] use mixtures of content-based and collaborative filtering based

approaches; no comparisons against more traditional LTR methods.

• Google: Ai et al. [1] propose GSF (groupwise scoring functions), learned with a

DNN, so that the relevance score of a document is determined jointly by multiple

documents; comparisons on WEB30K and on a mail dataset.

• Mercateo: Anwaar et al. [2] use counterfactual LTR and logged add-to-basket

and order signals for product search; comparison of Lambda-MART and a neural

method.

• Microsoft: Ling et al. [36] use GDBT to boost neural network output on the ad

click prediction task; no comparison with other LTR methods.
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LTR from the trenches iv

• Trivago: Ludewig and Jannach [39] uses extensive feature engineering and a

mixture of BPR, doc2vec and GBDT; no systematic comparison against

traditional LTR or ablation study.

• Walmart: Karmaker Santu et al. [29] compare Lambda-MART and a range of

other methods on a product search task; GBDT/GBRT are not considered.

• Yahoo!: Yin et al. [62] use GBDT (“LogisticRank”) to rank web documents;

GBDT beats LambdaMART

• Yandex: Gulin et al. [18] use oblivious trees for document ranking; limited

comparison with LambdaRank.
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Practical Considerations



Neural Networks or Boosted Trees?

Neural networks

+ Easy to integrate non-tabular features:

text embeddings, images, . . .

+ Integrate advances in deep learning

− Unscaled / non-smooth features

− Higher-order feature interactions in

feed-forward networks [56]

Gradient boosted decision trees

+ Strong performance on (unprocessed)

tabular data

+ Advances in GBDT in last decade

(XGBoost, CatBoost, LightGBM)

− Less trivial for non-tabular data

− Prone to overfitting

NN are starting to catch up with GBDT [51]
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Tools and Libraries

GBDT

• LightGBM [31]

• CatBoost [49]

• XGBoost [8]

What are the differences (NeptuneAI post)?

Neural networks

• TensorFlow Ranking [45]: Probably the best industry choice

• PyTorch LTR [24], PTRank [63]

• Rax [26]: Approximate metric optimization with Jax

Try to avoid

• RankLib: Inferior LambdaMART implementation [51]

• Unbiased LambdaMART [23]: Popular library with theoretical deficiencies [43]
41
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A few more things to keep in mind

• Model complexity – the more complex the model, the more accurate it might

be. A simpler model can be faster and easier to understand, though perhaps less

accurate.

• Rerank depth – the deeper you rerank, the more you might find additional

documents that could be relevant. The deeper you rerank, the higher the latency.

• Feature complexity – if you compute very complex features at query time, they

might help your model. They will increase latency.

• Number of features - a model with many features might lead to higher

relevance. Practical LTR systems usually boil the number down to dozens.

Choosing the right cut-off threshold on number of features matters.
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Conclusion



Summary

In this tutorial, we discussed:

• supervised LTR, the task of learning a model to rank items based on numerical

feature representation in order of relevance to a given query.

• pointwise, pairwise, and listwise approaches to LTR.

• the most important algorithms: RankNet, LambdaRank, ListNet.

• (known) features and algorithms used in industry applications.

• practical considerations when applying these models.

We conclude by discussing overall limitations of supervised LTR and given an

outlook on work addressing these limitations.
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Limitations of supervised LTR

Limitations of expert-annotated datasets:

• expensive to obtain [6, 50]

• unethical in privacy-sensitive applications [57]

• impossible in personalized settings [57]

• stationary, not capturing relevance over time [33]

• misalignment with actual user intent [52]

• disagreement between annotators [30]

Other limitations:

• Relies on typically handcrafted numerical features [6, 14, 50]

• Builds on simplified assumptions of user behavior
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Outlook

Unbiased learning to rank

Learn from (biased) user click feedback

instead of annotations [44]

Online learning to rank

Learn ranking models while directly interacting

with users [44]

Neural IR

Use large language models for ranking and replace

handcrafted features [35]
Upcoming SIGIR 2023 tutorial
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Outlook

Beyond accuracy goals, including:

• Diversity of ranked items [7]

• Explainability, a.o., to increase trust in a system [34]

• Fairness, e.g., equally relevant items should get equal exposure [41]

• Multi-sided marketplaces, optimizing for the utility of multiple stakeholders [40]

• Resilience, e.g., to distributional shifts or adversarial actors [25]

• Composition of complex SERPs [15]
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