Unbiased Learning to Rank Meets Reality: Lessons from Baidu's Large-Scale Search Dataset

Philipp Hager^{1,3}, Romain Deffayet^{1,2}, Jean-Michel Renders², Onno Zoeter³, Maarten de Rijke¹ ¹University of Amsterdam, ²Naver Labs Europe, ³Mercury ML Lab - Booking.com

SIGIR Reproducibility Track Philipp Hager - July 16th, 2024

Unbiased learning to rank (ULTR)

- Position bias: Top-ranked items gather more user attention and clicks
- We should not naively treat clicks/non-clicks as positive/negative feedback
- Unbiased learning to rank learns ranking models from biased clicks

[1] Granka, Laura, Matthew Feusner, and Lori Lorigo. Eyetracking in online search. In Passive eye monitoring 2008

Eye tracking study in web search [1]

Sign in
(0.10 seconds)
arking
Jose Airport
m
irport
e today.
arking
rking?
much morel
an Can
ne info
g San
-
rt Parking
s, ratings,

Evaluation in simulation

Most (academic) work in unbiased learning to rank is evaluated in semi-synthetic simulation [1]:

- Simulate synthetic clicks on classic LTR datasets (MSLR, Yahoo!, etc.)
- But does ULTR work in reality?

Baidu-ULTR [2] is the first large-scale web search dataset with real clicks for offline evaluation (\approx 380M queries, \approx 1.2B user sessions)

[1] Ai, Qingyao, et al. Unbiased Learning to Rank: Online or Offline? In TOIS 2021. [2] Zou, Lixin, et al. A Large Scale Search Dataset for Unbiased Learning to Rank. In NeurIPS 2022.

A reality check for ULTR at NeurIPS 2022

Models were trained on user clicks and evaluated on expert annotations.

[1] Zou, Lixin, et al. A Large Scale Search Dataset for Unbiased Learning to Rank. In NeurIPS 2022.

Five MonoBERT cross-encoders trained on the Baidu-ULTR dataset, four with ULTR objectives [1].

Why reproduce this work?

- The finding that ULTR does not outperform a naive baseline [1] warrants more scrutiny
- The authors did not properly estimate position bias and we found dataset artifacts (20% of the dataset consists of two docs)
- The original work focused on pointwise ranking methods [1] but many ULTR methods were proposed in pairwise/listwise settings.

[1] Zou, Lixin, et al. A Large Scale Search Dataset for Unbiased Learning to Rank. In NeurIPS 2022. [2] Chen, Xiaoshu, et al. Multi-feature integration for perception-dependent examination-bias estimation. In WSDM Cup 2023.

• WSDM Cup participants reported much higher ranking performance [2], in fact, we find all reported results are outperformed by random shuffling

Research questions

RQ1: Does unbiased learning-to-rank improve performance on the Baidu-ULTR dataset over naive, non-debiasing models?

RQ2: How do ranking losses and input features affect ranking performance on Baidu-ULTR?

RQ3: Can ULTR methods be applied during language model training?

The Baidu-ULTR Dataset

The Baidu-ULTR dataset

- **Training:** 1.2B user sessions randomly sampled from Baidu in April 2022 (usually top 10 docs per session)
- **Testing:** 7K annotated queries (\approx 400K query-document pairs, up to top 1,000 docs)
- Content features: Query, title, abstract tokenized with a private vocabulary -> no pretrained LLMs
- User feedback: clicks, dwell time, skipping, ...
- **Presentation features:** item type, height, position, ...

In this work, we focus on query-document text, position, and clicks.

Baidu search engine in 03/2024

Position bias on Baidu-ULTR

• CTR • REM • All Pairs • Adjacent Chain • Pivot One

Four different position bias estimation methods arrive at a similar bias estimation, hinting at a noticeable position bias in the dataset.

Therefore, we expect ULTR methods to improve ranking performance on this dataset.

Experimental Setup

Baidu Cross Encoder Setup

MonoBERT cross encoder

- BERT base (12 layers, 12 heads, 768 dims)
- 2M training steps x 256 batch size
- HuggingFace FlaxBERT (≈50% faster than PyTorch in our setup)

Losses

- Ranking loss: binary cross-entropy on clicks
- MLM loss: 30% masking rate

11

Reranking Dataset

To conduct more experiements, we create a smaller reranking dataset ($\approx 2.3M$ sessions) using pre-computed query-document embeddings.

Pre-computed query-document embeddings:

- Original Baidu MonoBERT CLS token (pre-trained on click prediction)
- Our MonoBERT CLS token (pre-trained on click prediction)
- Our LTR features (TF-IDF, BM25, QL Jelinek Mercer, QL Dirichlet)

Reranking Model

Feed forward ReLU networks

- 64 1024 hidden dims
- 2 5 layers
- Optional dropout
- Log1p normalization for LTR

Ranking Loss

- Pointwise: Binary cross-entropy
- Listwise: Softmax cross-entropy
- Listwise: LambdaRank

Results

We can reproduce the Baidu NeurIPS results

Baidu BERT Embeddings

We can reproduce the Baidu NeurIPS results

Baidu BERT Embeddings

RQ 1: Does ULTR improve performance?

Our BERT Embeddings

Ranking Loss

Binary Cross Entropy

Softmax Cross Entropy

Random shuffle

RQ 2: How do results compare across features and losses?

LTR Features

Ranking Loss

Binary Cross Entropy

Softmax Cross Entropy

Random shuffle

RQ3: Can ULTR methods be applied during language model pre-training?

What if we directly train MonoBERT with ULTR?

- We train **three pointwise** and three listwise MonoBERTs from scratch
- ULTR leads to stark model differences when applied during pre-training
- IPS-based methods degrade ranking performance
- And again, listwise outperforms pointwise

The interactions between ULTR and transformers need further investigation

Model	DCG@10↑	NLL
Pointwise Naive	7.251	0.227
Pointwise Two-Tower	7.456	0.217
Pointwise IPS	6.296	0.317
Listwise Naive	8.478	_
Listwise IPS	7.450	_
Listwise DLA	7.802	_

19

Discussion

Ranking vs. click prediction

- **ULTR consistently leads to better** click prediction
- But better click prediction does **NOT imply better ranking performance**
- BM25 alone achieves a DCG@10≈9.54, better than any BERT model trained on clicks

Why might ULTR not improve ranking performance?

- No position bias (unlikely, given our analysis)
- More complex user behavior
- Identifiability issues when estimating position bias
- **Distribution shift between training and testing:** Training on top-10 vs. testing on up to top-1000 items
- Training on data collected from a strong logging policy [1]
- Potential disagreement between users and annotators

[1] Deffayet, Romain, et al. An offline metric for the debiasedness of click models. In SIGIR 2023.

Implications for the field

best) marginal improvements on the largest public ULTR dataset.

- Our results call for adjusting simulation setups to reflect real-world challenges
- Interaction between ULTR methods and transformers needs further exploration
- Measuring success in ULTR (clicks vs. annotations) is non-trivial

Our results confirm the original authors, common ULTR methods lead to (at

Lastly, we only challenge the validity of ULTR on this particular dataset

23

Contributions

• Data: We publish our three smaller, cleaned, and pre-processed Baidu-ULTR reranking datasets with BERT embeddings and LTR features:

```
Load train / test click dataset:
from datasets import load_dataset
dataset = load_dataset(
    "philipphager/baidu-ultr_baidu-mlm-ctr",
    name="clicks",
    split="train", # ["train", "test"]
    cache_dir="~/.cache/huggingface",
dataset.set_format("torch") # [None, "numpy", "torch", "tensorflow", "pandas", "arrow"]
```

Our BERT embeddings for Baidu ULTR on HuggingFace [1]

[1] <u>https://huggingface.co/datasets/philipphager/baidu-ultr_uva-mlm-ctr</u>

Contributions

- Data: We publish our smaller, cleaned, and pre-processed Baidu-ULTR reranking datasets with BERT embeddings and LTR features
- Methods: We publish Jax implementations of six standard ULTR methods
- Models: We train six MonoBERT models from scratch, releasing their weights
- Bias estimation: We publish code for four position bias estimators

Philipp Hager, p.k.hager@uva.nl

Backup

Position Based Model

PBM Users click on examined and relevant items:

$P(C = 1 \mid d, k) = P(E = 1 \mid k) \cdot P(R = 1 \mid d)$

Prob. ofProb. of doc dexamining rank kbeing relevant

Jointly modeling bias & relevance

Two Towers: Mirrors the PBM in a neural network setup, optimizes parameters using BCE.

RegressionEM: Explicitly computes posterior distributions of bias and relevance in loss.

[1] Agarwal, Aman, et al. Estimating position bias without intrusive interventions. In WSDM 2019.

Prob. of doc d being relevant

Prob. of examining rank k

Inverse Propensity Scoring

Reweight clicks by position bias to estimate unbiased relevance: $P(R = 1 \mid d, k) = \frac{P(C = 1 \mid d)}{P(E = 1 \mid k)}$

For example, if an item has a 25% chance of being viewed, each click is weighted 4x

Requires estimate of position bias (intervention harvesting, RegressionEM)

[1] Joachims, Thorsten, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-to-rank with biased feedback. In WSDM 2017.

Dual Learning Algorithm

Uses IPS to learn position bias

I. Estimate relevance given the current position bias estimate (same as IPS):

$$P(R = 1 \mid d, k) = \frac{P(C = 1 \mid d)}{P(E = 1 \mid k)}$$

2. Estimate position bias given the current relevance estimate:

$$P(E = 1 \mid k) = \frac{P(C = 1 \mid d)}{P(R = 1 \mid d, k)}$$

[1] Ai, Qingyao, et al. Unbiased learning to rank with unbiased propensity estimation. In SIGIR 2018.

Pairwise Debiasing / Unbiased LambdaMART

Estimates propensity ratios for clicked and non-clicked documents: $\frac{\mathscr{L}(\tilde{r}(q,d);c)}{\tilde{e}^+(k)\cdot\tilde{e}^-(k)} + \left\| \tilde{e}^+(k) \right\| + \left\| \tilde{e}^-(k) \right\|$

 $\tilde{e}^{-}(k)$ is the reciprocal of the probability of an unclicked document being irrelevant at position k

Assumptions challenged in Oosterhuis [2]

[1] Hu, Ziniu, et al. Unbiased lambdamart: an unbiased pairwise learning-to-rank algorithm. In WWW 2019. [2] Oosterhuis, Harrie. Reaching the end of unbiasedness: Uncovering implicit limitations of click-based learning to rank. In ICTIR 2022.

The curious case of two documents

MD5 hashes of query/title/abstract revealed:

- 13% of documents have a "-" as a title: unavailable content
- 9% of documents share the same title: what other people searched

