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Learning from controlled sources

Developing a common toolkit for decision making and prediction
based on data collected by previous production systems.
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Natural Language Processing

Developing and lanuage models.

Examples
Explainable text classitication.
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Causal Inference Reinforcement Natural Language Search &
Learning Processing Recommendation
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Motivation

We interact with algorithms on a daily basis:
searching the web, listening to songs,
scrolling through photos, efc.

Most of our interactions are implicit:
we click, view, skip, or keep watching.

What happens it we use implicit feedback
fo optimize search and recommender systems?
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Implicit feedback is often a biased and

leads to biased algorithms if used naively. ~ N
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Selection bias: Users can only click on HEROINE

what is displayed. S
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Position bias: Users tend to look and click more
on items at the beginning of a list.
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Trust bias, presentation bias, contextual bias, ...
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Click Models

How can we extract useful information about
but also user preferences tfrom clicks?

Click models that impact
a user’s click, e.g.: position, trust, or item relevance.

Click models are usetul for:
understanding users, evaluation metrics, estimating
biases, simulating users, and predicting ad clicks.

Bayesian network of the

position-based model
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Evaluating Click Models

How do we evaluate click models?

Evaluating the Robustness of Click Models to Policy
Distributional Shift
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ROMAIN DEFFAYET and JEAN-MICHEL RENDERS, Naver Labs Europe
MAARTEN DE RIJKE, University of Amsterdam

Many click models have been proposed to interpret logs of natural interactions with search engines and ex-
tract unbiased information for evaluation or learning. The experimental setup used to evaluate them typically
involves measuring two metrics, namely the test perplexity for click prediction and normalized discounted
cumulative gain for relevance estimation. In both cases, the data used for training and testing is assumed to

® ® ® ° ° ° °
. be collected using the same ranking policy. We question this assumption.
Important downstream tasks based on click models involve evaluating a different policy than the training
. policy—that is, click models need to operate under policy distributional shift (PDS). We show that click models

are sensitive to it. This can severely hinder their performance on the targeted task: conventional evaluation
metrics cannot guarantee that a click model will perform equally well under distributional shift.

To more reliably predict click model performance under PDS, we propose a new evaluation protocol. It
allows us to compare the relative robustness of six types of click models under various shifts, training config-

([ ]
urations, and downstream tasks. We obtain insights into the factors that worsen the sensitivity to PDS and
formulate guidelines to mitigate the risks of deploying policies based on click models.
Y CCS Concepts: « Information systems — Query log analysis;

Additional Key Words and Phrases: Click models, offline evaluation, web search, distributional shift

ACM Reference format:

Romain Deffayet, Jean-Michel Renders, and Maarten de Rijke. 2023. Evaluating the Robustness of Click Mod-
els to Policy Distributional Shift. ACM Trans. Inf. Syst. 41, 4, Article 84 (March 2023), 28 pages.
https://doi.org/10.1145/3569086

1 INTRODUCTION

Search engines rank items according to their relevance to users, given the query they enter as well
as the user and search context. To do so, many learning-to-rank (L2R) approaches leverage click
logs, due to their abundance and the realistic settings they result from [7, 23]. However, clicks and
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. skips are not direct signals of relevance. They emerge from interactions of users with the search
system, meaning that the data is biased by the policy in place in the search system during data
. collection, often called the logging policy [18]. Different sources of intrinsic bias induced by the

logging policy have been identified, such as position bias [22] (the position of documents in the
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Dettayet et al. show that these metrics do not e
guarantee that high-scoring models generalize well. OIS 2023




When metrics break down

Scenario I: Naive and biased click models
can score high in ranking metrics, especially when:

a.) The system collecting the data is already very good.

b.) The system tends to display similar rankings.
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When the production system is already very good

Attention [O\ Clicks




When the production system is already very good
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When the current ranking is near-optimal,

Clicks

just replicating the current system achieves high ranking performance.
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When the production system is already very good

Attention [O\ Clicks
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But what if we predict clicks for the inverted ranking?
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When the production system is already very good

Attention [O\ } Clicks
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The actual click distribution would look more like this...

the naive model does not generalize to unseen data.



When metrics break down

Scenario ll: Deffayet et al. show in simulation that perpelxity is less
reliable when no models fits the observed user behavior.

Perplexity quantities how well we can predict clicks on the current dataset,
there are little guarantees for completely unseen rankings.
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More diverse test sets

Can’t we avoid these problems by evaluating on
more diverse test sets?

Having more diverse test sets helps.

However, it might be costly or impractical to introduce a lot of
variability info real-world production systems.

More generally, ranking operates in tactorial complexity O(N!),
most datasets can only cover a fraction ot all possible rankings.

19



Other ways to detect this problem?

In all of these settings, a main problem is that replicating
(without understanding) the current produciton system is very effective.

How would you detect a cheater in school?

Comparing grades does not work,
students who cheat can score high grades just by copying.

20



Other ways to detect this problem?

In all of these settings, a main problem is that replicating
(without understanding) the current produciton system is very effective.

How would you detect a cheater in school?

Comparing grades does not work,
students who cheat can score high grades just by copying.

We compare their mistakes!
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CMIP

Old model New model
r D e
Q Q
Using a small set of expert -
annotations, we can quantity
it a new model makes similar N y N
mistakes to the previous model.
Expert annotations
4 )

Q

We leverage conditional mutual
information estimation.




CMIP

Nofte that CMIP is a necessary condition and
not sufficient.

Predicting random clicks scores well in CMIP,
but is a bad click model.

CMIP extends the existing evaluation protocol.
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Evaluation

We find in large-scale simulation experiments that
CMIP in conjunction with existing metrics:

1.) Significantly improves predicting the downstream performance
of click models.

2.) Helps to pick models that predict clicks well on unseen rankings.
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Limitations

Our work relies on:

» The availability of expert annotations / a ground truth.

» The assumption that there is no systematic
disagreement between experts and user clicks.

» Simulation experiments (so far).

25



O

1.0-

0.5-

0.0-

1.0-

True relevance

0 1 2 3 4
0.2-
0.1-
-‘l“; | | | 'lj | | OO_
0O 2 4 6 0O 2 4 6
0.2-
0.1-
-~
0.0-

0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
Logging policy Logging policy Logging policy Logging policy Logging policy

CMIP |

0.143

CMIP |

—-0.009

1.0-

0.5-

0.0-

1.0

nDCG 1
0.931

nDCG 1
0.912

A naive model (DCTR) outperforms an unbiased model (PBM) in terms of nDCG,
but our CMIP metric catches the replication behavior.
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